Lecture 22: Hadron Collider Physics (I)

Nov 14, 2016

Why Hadron Colliders

- ullet e^+e^- annihilation provides a clean environment
 - Center-of-mass energy known
 - ► All energy goes into creation of new particles
 - lacktriangle Coupling to all objects with charge with rates $\propto q^2$
- But electrons are light: large amount of radiation when they are accelerated
 - ► Difficult to make high energy colliders
 - ► Largest \sqrt{s} achieved at LEP: 209 GeV
- Hadron colliders can acheive much higher energy
 - ▶ Highest \sqrt{s} to date at LHC: 13 TeV
- In addition, hadron collisions provide direct access to gluons

Phenomonology of Hadron Collisions

- Cross section dominated by soft processess
- \bullet Low momentum transfer \rightarrow cannot describe bulk of cross section using perturbative QCD
- As with fragmentation, use phenomenological models
- Qualitative features:
 - ightharpoonup Limited p_T wrt beamline
 - ► Longitudinal momentum distribution dominated by phase space
- Expectations particle production in soft interactions same as what we saw in e^+e^- hadronization:
 - Multiplicity rises $\sim \ln(s)$
 - ► Particle production flat in rapidity (measured wrt beamline)
 - Since particle mass not measured, replace with angular variable
 - Pseudorapidity $\eta \equiv -ln(\tan(\theta/2))$ Same expression you saw in hw # 5
 - lacktriangle Spectrum falls rapidity with p_T

Characterizing the soft physics: "Minimum Bias" events

- Particle production flat in η
- \bullet Small rise in $dN/d\eta$ with \sqrt{s}

- $\bullet \ dN/dpT$ falls exponentially for low \sqrt{s}
- As \sqrt{s} increase, high tail develops Onset of hard scattering!

Underlying Event and Hard Scattering

 Hard Collision leaves remnants of incoming p's moving in Beam Direction

Beam Remarks Remarks

 "Initial State" gluon radiation largely co-linear with incoming partons: same basic structure

Soft particles distributed uniformly in η

Calculating Hard Scattering Cross Sections

$$d\sigma(a+b \to c+d+X) = \sum_{ij} f_i^{(a)(x_a)} f_j^{(b)}(x_b) d\hat{\sigma}(i+j \to c+d+X') D_{c/C}(z_c) D_{d/D}(z_c) D_{d/D$$

- $\hat{\sigma}$ calculated using QCD
- f(x), D(z) measured in reference processes; Exhibit scaling violations: $F(x, \mu)$, $D(z, \mu')$
- \bullet Note: example here is $2 \to 2$ scattering; $2 \to 1$ and $2 \to N$ also possible

Hard Scattering: General Observations

Two "beam jets" plus high p_T objects

- Hard Scattering
 - $\hat{s} = x_a x_b s$ where x's are the fraction of the hadron momenta carried by the iteracting partons
 - $ightharpoonup p_T$ in general is well measured
 - ▶ p_Z can be large. Usually <u>not</u> well measured directly (losses down the beampipe)
 - Cross sections for hard scattering can be calculated using perturbative QCD
- Beam Jets: "Underlying Event"
 - ightharpoonup Limited p_T wrt beamline
 - ► Looks alot like soft events
 - ightharpoonup Presence of hard scatter \longrightarrow larger $p\overline{p}$ overlap, so mean p_T and multiplicity somewhat higher

Examples of Hard Scattering Processes

Elastic Scattering

• Compton Scattering

Annihilation

Predicted Cross Sections

- Rates determined by
 - ► Hard Scattering Cross Section
 - ► Parton luminosity
- QCD processes dominate
 - ightharpoonup EW rates lower by $lpha/lpha_S$
- For given s, cross sections decrease rapidity with \hat{s}
 - Heavy particles difficult to produce

How well do these calculations do?

Experimental Details (LHC example)

- Something happens every beam crossing
 - ▶ 24 inelastic events/crossing at $10^{34}~{\rm cm}^{-2}s^{-1}$ "Pile-up"
- Must select events of interest: Trigger
 - ► Must know what you throw out
 - Analysis must be trigger-aware
- Jets dominate hard scattering rate
 - Can isolate EW processes only if they have something besides jets, eg leptons
 - Jets are a potential source of background to leptons "fakes"
 - Detector mis-measurements can induce false signals
- W, Z: Background for Top, Higgs, SUSY
- Top: Background for many SUSY

Analysis Strategy: Begin with the largest cross section and work down

- Characterize bulk of cross section "soft physics"
 - ▶ Tracks
- Identify dominant $2 \rightarrow 2$ QCD processes
 - Jets
- Develop strategies for selecting EW processes
 - ightharpoonup e, μ , ν , γ
- Reconstruct heavy objects produced strongly
 - ► Top
- Understand discovery potential for low rate EW processes
 - Dibosons
 - ▶ Higgs
- Develop strategies to look for new physics (BSM)

Track distributions from underlying event

- Look away from the hard scattering products (jets or leptons)
 - ► Eg, 90° from jets in a dijet event
- Particle multiplicity almost independent of jet p_T
- Remnants of the inital hadrons moving down beamline with limited p_T with respect to beam direction

QCD Jets

- Strategy:
 - ► Calorimeter based pattern recognition
 - ► Associate tracks with jets after calorimeter jets found

First Evidence for Jets in Hadron Colliders (UA2, 1982)

Figure 3 The observed distribution of $d\sigma/d\Sigma E_t$ as a function of ΣE_t as measured by the UA2 experiment. The solid line shows the exponential falloff at low ΣE_t .

$p\overline{p}$ interactions at 546 GeV $(Sp\overline{p}S$ collider at CERN)

- High tail in $\sum E_T$ indicates onset of hard scattering
- Use simple nearest-neighbor clustering algorithm
- \bullet Majority of transverse energy in two clusters, back-to-back in ϕ
- Dijet system boosted in z: two intial partons carry different fractions of inital hadron energies

Figure 4 The fraction of the total transverse energy observed in the highest (h_i) and two highest (h_i) clusters as a function of the total transverse energy of the event, as measured by the UA2 experiment.

Figure 5. The distribution of the difference in azimuch between the two highest E_c cluster in events with $(\Sigma E_c \ge 60 \text{ GeV})$, as measured by the UA2 experiment.

Evidence for the non-abelian nature of the gluon

- Elastic parton-parton scattering
- t-channel exchange of a gluon
- All 3 processes have similar Feynman diagrams
 - Different quark and gluon n color charge
 - ▶ Different quark and gluon PDFs
 - Define an "single effective subprocess" PDF

$$F(x) = G(x) + \frac{4}{9} \left(Q(x) + \overline{Q}(x) \right)$$

• Clear evidence for gluon scattering

Angular Distribution

t-channel pole leads to angular distribtion

$$\frac{d\sigma}{d\cos\theta^*} = \alpha_s^2 \hat{s} \frac{1}{1-\cos^2\theta^*}$$

- Rutherford-like shape with divergence in beam direction
- Change variables

$$\chi \equiv \frac{1 + \cos \theta^*}{1 - \cos \theta^*}$$

Distribution is approximately constant for $\chi>2$

Figure 9 The distribution of x for two-jet events as measured by the UA1 collaboration. The curve shows the predictions of a lowest-order two-parton scattering QCD calculation, with and without contributions due to QCD scaling violations.

What do jets look like at the LHC?

State of the Art: Theory and Experiment

- Hard scattering cross section at NLO or multileg (your choice)
 - Estimate uncertainties by evaluating dependence of calculation on choice of scale
- Well measured PDFs
- Jet finding algorithms that are infra-red and colinear safe
- Evaluation of non-perturbative effects through the use of Monte Carlo generators
 - Independent generators and generator tunes to assess systematic uncertainties
- Careful in-situ calibration of jet energy
- Corrections for pileup (multiple collisions in one beam crossing)

Can the theorists predict the cross section?

How about 3 jets?

Using dijet angular distribution to look for new physics

- Look for new resonance that decays to jets
 - Signal is a peak in dijet invariant mass
- In addition, new heavy resonance would decay with spherical angular distribution
 - Can distinguish from QCD background, which is peaked at large cos θ*
 - ▶ Bin in dijet mass and plot χ
 - Signal would manifest as peak in low χ region
- Analysis requires good understanding of QCD background

